Summary statistics for numeric data variable
Usage
msumstat(
datain = NULL,
a_subset = NA_character_,
dptvar = NULL,
statvar = "",
sigdec = "",
dptvarn = 1,
sparsebyvalyn = "N",
figyn = "N"
)
Arguments
- datain
Input dataset from
mentry()
- a_subset
Analysis subset condition specific to this function.
- dptvar
Numerical variable for analysis. eg:
"AGE"
,"HEIGHTBL"
- statvar
Tilde
(~
)-separated list of statistics to be computed. eg:"mean~median"
- sigdec
Number of base decimal places to retain in output Applies to mean, min, max, sd etc
- dptvarn
Number to assign as
'DPTVARN'
, used for block sorting when multiple blocks are created to be combined.- sparsebyvalyn
Sparse missing categories within by groups.
"Y"/"N"
- figyn
Determine if output is for figure or not
"Y"/"N"
Value
a list containing 2 elements
tsum
- Dataset with statistics as rows, for table outputgsum
- Dataset with statistics as columns, for plot output
Details
Current available statistics (values for statvar
) :
n (count per group), mean, median, sd (standard deviation), min, max,
iqr (interquartile range), var (variance), sum, range ("min, max")
mean(sd), median(minmax), q25/q1 (25 % quantile), q75/q3 (75 % quantile) , p10 (10% quantile),
p5, p1, p90, p95, p99, q1q3 ("q25, q75"), whiskerlow, whiskerup (box lower/upper
whiskers), outliers (boxplot outliers, tilde-separated output), geometric mean/sd/CI
box = median~q25~q75~whiskerlow~whiskerup~outliers (Tukey's method)
Examples
data(adsl)
adsl_entry <- mentry(
datain = adsl,
subset = "EFFFL=='Y'",
byvar = "SEX",
trtvar = "TRT01A",
trtsort = "TRT01AN",
pop_fil = NA
)
adsl_sum <- adsl_entry |>
msumstat(
dptvar = "AGE",
a_subset = "SEX == 'F'",
statvar = "mean(sd)~median(minmaxc)~q3",
sigdec = "3(2)~2(0)~1",
sparsebyvalyn = "N"
)
#> msum success
adsl_sum$tsum
#> # A tibble: 9 × 9
#> BYVAR1 BYVAR1N TRTVAR DPTVAR CN DPTVARN DPTVAL CVALUE DPTVALN
#> <chr> <dbl> <ord> <chr> <chr> <dbl> <chr> <glue> <dbl>
#> 1 F 1 Placebo AGE N 1 mean(… 76.10… 1
#> 2 F 1 Placebo AGE N 1 media… 77.50… 2
#> 3 F 1 Placebo AGE N 1 q3 83.0 3
#> 4 F 1 Xanomeline Low Dose AGE N 1 mean(… 76.38… 1
#> 5 F 1 Xanomeline Low Dose AGE N 1 media… 78.00… 2
#> 6 F 1 Xanomeline Low Dose AGE N 1 q3 81.0 3
#> 7 F 1 Xanomeline High Dose AGE N 1 mean(… 74.25… 1
#> 8 F 1 Xanomeline High Dose AGE N 1 media… 76.00… 2
#> 9 F 1 Xanomeline High Dose AGE N 1 q3 79.0 3
adsl_sum$gsum
#> # A tibble: 3 × 9
#> BYVAR1 BYVAR1N TRTVAR `mean(sd)` `median(minmaxc)` q3 DPTVAR CN DPTVARN
#> <chr> <dbl> <ord> <glue> <glue> <chr> <chr> <chr> <dbl>
#> 1 F 1 Placebo 76.109 (8… 77.50 (59,88) 83.0 AGE N 1
#> 2 F 1 Xanome… 76.383 (7… 78.00 (56,87) 81.0 AGE N 1
#> 3 F 1 Xanome… 74.257 (7… 76.00 (56,88) 79.0 AGE N 1